Your browser doesn't support javascript.
loading
Electrical signals in the ER are cell type and stimulus specific with extreme spatial compartmentalization in neurons.
Campbell, Evan P; Abushawish, Ahmed A; Valdez, Lauren A; Bell, Miriam K; Haryono, Melita; Rangamani, Padmini; Bloodgood, Brenda L.
Afiliação
  • Campbell EP; Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
  • Abushawish AA; Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
  • Valdez LA; Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
  • Bell MK; Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
  • Haryono M; Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
  • Rangamani P; Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
  • Bloodgood BL; Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Electronic address: blbloodgood@ucsd.edu.
Cell Rep ; 42(1): 111943, 2023 01 31.
Article em En | MEDLINE | ID: mdl-36640310
The endoplasmic reticulum (ER) is a tortuous organelle that spans throughout a cell with a continuous membrane containing ion channels, pumps, and transporters. It is unclear if stimuli that gate ER ion channels trigger substantial membrane potential fluctuations and if those fluctuations spread beyond their site of origin. Here, we visualize ER membrane potential dynamics in HEK cells and cultured rat hippocampal neurons by targeting a genetically encoded voltage indicator specifically to the ER membrane. We report the existence of clear cell-type- and stimulus-specific ER membrane potential fluctuations. In neurons, direct stimulation of ER ryanodine receptors generates depolarizations that scale linearly with stimulus strength and reach tens of millivolts. However, ER potentials do not spread beyond the site of receptor activation, exhibiting steep attenuation that is exacerbated by intracellular large conductance K+ channels. Thus, segments of ER can generate large depolarizations that are actively restricted from impacting nearby, contiguous membrane.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retículo Endoplasmático / Neurônios Limite: Animals / Humans Idioma: En Revista: Cell Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retículo Endoplasmático / Neurônios Limite: Animals / Humans Idioma: En Revista: Cell Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos