Your browser doesn't support javascript.
loading
Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS.
Wang, Ran; Tong, Wei; Wu, Yijing; Chen, Zhuling; Lin, Zian; Cai, Zongwei.
Afiliação
  • Wang R; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
  • Tong W; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
  • Wu Y; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
  • Chen Z; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
  • Lin Z; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China. zianlin@fzu.edu.cn.
  • Cai Z; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong, SAR, People's Republic of China. zwcai@hkbu.edu.hk.
Mikrochim Acta ; 190(2): 72, 2023 01 25.
Article em En | MEDLINE | ID: mdl-36695957
A hollow microtubular covalent organic framework (denoted as TatDha-COF) was synthesized by solvothermal method for the enrichment and determination of quinones. The TatDha-COF showed large specific surface area (2057 m2 g-1), good crystal structure, ordered pore size distribution (2.3 nm), stable chemical properties and good reusability. Accordingly, a simple and efficient method based on dispersive solid-phase extraction (d-SPE) and atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS) was developed for the determination of quinones in complex samples. The established method demonstrated a wide liner range, good linearity (r>0.9990), high enrichment factors (EFs, 24-69-folds) and low detection limits (LODs, 0.200-30.0 pg L-1, S/N≥3). On this basis, the suggested method was successfully applied to sensitively detect the eight ultratrace quinones in mice plasma. Overall, the established method has provided a powerful tool for the enrichment and detection of ultratrace quinones in complex samples, presenting the promising application of TatDha-COF in sample pretreatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Estruturas Metalorgânicas Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Mikrochim Acta Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Estruturas Metalorgânicas Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Mikrochim Acta Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China