Your browser doesn't support javascript.
loading
Automatic Segmentation of Hyperreflective Foci in OCT Images Based on Lightweight DBR Network.
Wei, Jin; Yu, Suqin; Du, Yuchen; Liu, Kun; Xu, Yupeng; Xu, Xun.
Afiliação
  • Wei J; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Cent
  • Yu S; Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
  • Du Y; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Cent
  • Liu K; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Cent
  • Xu Y; Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Xu X; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Cent
J Digit Imaging ; 36(3): 1148-1157, 2023 06.
Article em En | MEDLINE | ID: mdl-36749455
Hyperreflective foci (HF) reflects inflammatory responses for fundus diseases such as diabetic macular edema (DME), retina vein occlusion (RVO), and central serous chorioretinopathy (CSC). Shown as high contrast and reflectivity in optical coherence tomography (OCT) images, automatic segmentation of HF in OCT images is helpful for the prognosis of fundus diseases. Previous traditional methods were time-consuming and required high computing power. Hence, we proposed a lightweight network to segment HF (with a speed of 57 ms per OCT image, at least 150 ms faster than other methods). Our framework consists of two stages: an NLM filter and patch-based split to preprocess images and a lightweight DBR neural network to segment HF automatically. Experimental results from 3000 OCT images of 300 patients (100 DME,100 RVO, and 100 CSC) revealed that our method achieved HF segmentation successfully. The DBR network had the area under curves dice similarity coefficient (DSC) of 83.65%, 76.43%, and 82.20% in segmenting HF in DME, RVO, and CSC on the test cohort respectively. Our DBR network achieves at least 5% higher DSC than previous methods. HF in DME was more easily segmented compared with the other two types. In addition, our DBR network is universally applicable to clinical practice with the ability to segment HF in a wide range of fundus diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Edema Macular / Retinopatia Diabética Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Edema Macular / Retinopatia Diabética Limite: Humans Idioma: En Revista: J Digit Imaging Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Ano de publicação: 2023 Tipo de documento: Article