Your browser doesn't support javascript.
loading
Online Fall Detection Using Wrist Devices.
Marques, João; Moreno, Plinio.
Afiliação
  • Marques J; Instituto Superior Técnico, Unviersidade de Lisboa, 1049-001 Lisboa, Portugal.
  • Moreno P; Instituto Superior Técnico, Unviersidade de Lisboa, 1049-001 Lisboa, Portugal.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article em En | MEDLINE | ID: mdl-36772187
More than 37 million falls that require medical attention occur every year, mainly affecting the elderly. Besides the natural consequences of falls, most aged adults with a history of falling are likely to develop a fear of falling, leading to a decrease in their mobility level and impacting their overall quality of life. Previous wrist-based datasets revealed limitations such as unrealistic recording set-ups, lack of proper documentation and, most importantly, the absence of elderly people's movements. Therefore, this work proposes a new wrist-based dataset to tackle this problem. With this dataset, exhaustive research is carried out with the low computational FS-1 feature set (maximum, minimum, mean and variance) with various machine learning methods. This work presents an accelerometer-only fall detector streaming data at 50 Hz, using the low computational FS-1 feature set to train a 3NN algorithm with Euclidean distance, with a window size of 9 s. This work had battery and memory limitations in mind. It also developed a learning version that boosts the fall detector's performance over time, achieving no single false positives or false negatives over four days.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Qualidade de Vida / Punho Tipo de estudo: Diagnostic_studies Limite: Adult / Aged / Humans / Middle aged Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Portugal

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Qualidade de Vida / Punho Tipo de estudo: Diagnostic_studies Limite: Adult / Aged / Humans / Middle aged Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Portugal