Your browser doesn't support javascript.
loading
Mapping of glutamate metabolism using 1H FID-MRSI after oral administration of [1-13C]Glc at 9.4 T.
Ziegs, Theresia; Ruhm, Loreen; Wright, Andrew; Henning, Anke.
Afiliação
  • Ziegs T; High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany. Electronic address: theresia.ziegs@tuebingen.mpg.de.
  • Ruhm L; High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany.
  • Wright A; High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany.
  • Henning A; High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States.
Neuroimage ; 270: 119940, 2023 04 15.
Article em En | MEDLINE | ID: mdl-36787828
ABSTRACT
Glutamate is the major excitatory transmitter in the brain and malfunction of the related metabolism is associated with various neurological diseases and disorders. The observation of labeling changes in the spectra after the administration of a 13C labelled tracer is a common tool to gain better insights into the function of the metabolic system. But so far, only a very few studies presenting the labeling effects in more than two voxels to show the spatial dependence of metabolism. In the present work, the labeling effects were measured in a transversal plane in the human brain using ultra-short TE and TR 1H FID-MRSI. The measurement set-up was most simple The [1-13C]Glc was administered orally instead of intravenous and the spectra were measured with a pure 1H technique without the need of a 13C channel (as Boumezbeur et al. demonstrated in 2004). Thus, metabolic maps and enrichment curves could be obtained for more metabolites and in more voxels than ever before in human brain. Labeling changes could be observed in [4-13C]glutamate, [3-13C]glutamate+glutamine, [2-13C]glutamate+glutamine, [4-13C]glutamine, and [3-13C]aspartate with a high temporal (3.6 min) and spatial resolution (32 × 32 grid with nominal voxel size of 0.33 µL) in five volunteers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Glutâmico / Glutamina Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Glutâmico / Glutamina Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article