Your browser doesn't support javascript.
loading
TACCO unifies annotation transfer and decomposition of cell identities for single-cell and spatial omics.
Mages, Simon; Moriel, Noa; Avraham-Davidi, Inbal; Murray, Evan; Watter, Jan; Chen, Fei; Rozenblatt-Rosen, Orit; Klughammer, Johanna; Regev, Aviv; Nitzan, Mor.
Afiliação
  • Mages S; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Moriel N; Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany.
  • Avraham-Davidi I; School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
  • Murray E; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Watter J; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Chen F; Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany.
  • Rozenblatt-Rosen O; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Klughammer J; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • Regev A; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Nitzan M; Genentech, South San Francisco, CA, USA.
Nat Biotechnol ; 41(10): 1465-1473, 2023 10.
Article em En | MEDLINE | ID: mdl-36797494
ABSTRACT
Transferring annotations of single-cell-, spatial- and multi-omics data is often challenging owing both to technical limitations, such as low spatial resolution or high dropout fraction, and to biological variations, such as continuous spectra of cell states. Based on the concept that these data are often best described as continuous mixtures of cells or molecules, we present a computational framework for the transfer of annotations to cells and their combinations (TACCO), which consists of an optimal transport model extended with different wrappers to annotate a wide variety of data. We apply TACCO to identify cell types and states, decipher spatiomolecular tissue structure at the cell and molecular level and resolve differentiation trajectories using synthetic and biological datasets. While matching or exceeding the accuracy of specialized tools for the individual tasks, TACCO reduces the computational requirements by up to an order of magnitude and scales to larger datasets (for example, considering the runtime of annotation transfer for 1 M simulated dropout observations).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Multiômica Idioma: En Revista: Nat Biotechnol Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Multiômica Idioma: En Revista: Nat Biotechnol Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos