Your browser doesn't support javascript.
loading
Direct liquid transmission of sound has little impact on fermentation performance in Saccharomyces cerevisiae.
Benitez, Rachel; Harris, Alastair; Mansfield, Evie; Silcock, Pat; Eyres, Graham; Villas-Bôas, Silas G; Jeffs, Andrew; Ganley, Austen R D.
Afiliação
  • Benitez R; School of Biological Sciences, University of Auckland, Auckland CBD, New Zealand, New Zealand.
  • Harris A; School of Biological Sciences, University of Auckland, Auckland CBD, New Zealand, New Zealand.
  • Mansfield E; School of Biological Sciences, University of Auckland, Auckland CBD, New Zealand, New Zealand.
  • Silcock P; Department of Food Science, University of Otago, Dunedin, New Zealand.
  • Eyres G; Department of Food Science, University of Otago, Dunedin, New Zealand.
  • Villas-Bôas SG; Luxembourg Institute of Science and Technology, Z.A.E. Robert Steichen, Luxembourg, Luxembourg.
  • Jeffs A; School of Biological Sciences, University of Auckland, Auckland CBD, New Zealand, New Zealand.
  • Ganley ARD; School of Biological Sciences, University of Auckland, Auckland CBD, New Zealand, New Zealand.
PLoS One ; 18(2): e0281762, 2023.
Article em En | MEDLINE | ID: mdl-36800360
ABSTRACT
Sound is a physical stimulus that has the potential to affect various growth parameters of microorganisms. However, the effects of audible sound on microbes reported in the literature are inconsistent. Most published studies involve transmitting sound from external speakers through air toward liquid cultures of the microorganisms. However, the density differential between air and liquid culture could greatly alter the sound characteristics to which the microorganisms are exposed. In this study we apply white noise sound in a highly controlled experimental system that we previously established for transmitting sound underwater directly into liquid cultures to examine the effects of two key sound parameters, frequency and intensity, on the fermentation performance of a commercial Saccharomyces cerevisiae ale yeast growing in a maltose minimal medium. We performed these experiments in an anechoic chamber to minimise extraneous sound, and find little consistent effect of either sound frequency or intensity on the growth rate, maltose consumption, or ethanol production of this yeast strain. These results, while in contrast to those reported in most published studies, are consistent with our previous study showing that direct underwater exposure to white noise sound has little impact on S. cerevisiae volatile production and sugar utilization in beer medium. Thus, our results suggest the possibility that reported microorganism responses to sound may be an artefact associated with applying sound to cultures externally via transmission through air.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Nova Zelândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Nova Zelândia