Your browser doesn't support javascript.
loading
Multi-Layered Non-Local Bayes Model for Lung Cancer Early Diagnosis Prediction with the Internet of Medical Things.
Hussain Ali, Yossra; Chinnaperumal, Seelammal; Marappan, Raja; Raju, Sekar Kidambi; Sadiq, Ahmed T; Farhan, Alaa K; Srinivasan, Palanivel.
Afiliação
  • Hussain Ali Y; Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq.
  • Chinnaperumal S; Department of Computer Science and Engineering, Solamalai College of Engineering, Madurai 625020, India.
  • Marappan R; School of Computing, Sastra Deemed University, Thanjavur 613401, India.
  • Raju SK; School of Computing, Sastra Deemed University, Thanjavur 613401, India.
  • Sadiq AT; Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq.
  • Farhan AK; Department of Computer Sciences, University of Technology, Baghdad 10066, Iraq.
  • Srinivasan P; School of Computing, Sastra Deemed University, Thanjavur 613401, India.
Bioengineering (Basel) ; 10(2)2023 Jan 20.
Article em En | MEDLINE | ID: mdl-36829633
The Internet of Things (IoT) has been influential in predicting major diseases in current practice. The deep learning (DL) technique is vital in monitoring and controlling the functioning of the healthcare system and ensuring an effective decision-making process. In this study, we aimed to develop a framework implementing the IoT and DL to identify lung cancer. The accurate and efficient prediction of disease is a challenging task. The proposed model deploys a DL process with a multi-layered non-local Bayes (NL Bayes) model to manage the process of early diagnosis. The Internet of Medical Things (IoMT) could be useful in determining factors that could enable the effective sorting of quality values through the use of sensors and image processing techniques. We studied the proposed model by analyzing its results with regard to specific attributes such as accuracy, quality, and system process efficiency. In this study, we aimed to overcome problems in the existing process through the practical results of a computational comparison process. The proposed model provided a low error rate (2%, 5%) and an increase in the number of instance values. The experimental results led us to conclude that the proposed model can make predictions based on images with high sensitivity and better precision values compared to other specific results. The proposed model achieved the expected accuracy (81%, 95%), the expected specificity (80%, 98%), and the expected sensitivity (80%, 99%). This model is adequate for real-time health monitoring systems in the prediction of lung cancer and can enable effective decision-making with the use of DL techniques.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Bioengineering (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Iraque

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Bioengineering (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Iraque