Your browser doesn't support javascript.
loading
Progress in Discovering Transcriptional Noise in Aging.
Bartz, Josh; Jung, Hannim; Wasiluk, Karen; Zhang, Lei; Dong, Xiao.
Afiliação
  • Bartz J; Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA.
  • Jung H; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
  • Wasiluk K; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA.
  • Zhang L; Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA.
  • Dong X; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article em En | MEDLINE | ID: mdl-36835113
Increasing stochasticity is a key feature in the aging process. At the molecular level, in addition to genome instability, a well-recognized hallmark of aging, cell-to-cell variation in gene expression was first identified in mouse hearts. With the technological breakthrough in single-cell RNA sequencing, most studies performed in recent years have demonstrated a positive correlation between cell-to-cell variation and age in human pancreatic cells, as well as mouse lymphocytes, lung cells, and muscle stem cells during senescence in vitro. This phenomenon is known as the "transcriptional noise" of aging. In addition to the increasing evidence in experimental observations, progress also has been made to better define transcriptional noise. Traditionally, transcriptional noise is measured using simple statistical measurements, such as the coefficient of variation, Fano factor, and correlation coefficient. Recently, multiple novel methods have been proposed, e.g., global coordination level analysis, to define transcriptional noise based on network analysis of gene-to-gene coordination. However, remaining challenges include a limited number of wet-lab observations, technical noise in single-cell RNA sequencing, and the lack of a standard and/or optimal data analytical measurement of transcriptional noise. Here, we review the recent technological progress, current knowledge, and challenges to better understand transcriptional noise in aging.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pâncreas / Envelhecimento Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pâncreas / Envelhecimento Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos