Your browser doesn't support javascript.
loading
Inhibition of human APE1 and MTH1 DNA repair proteins by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles.
Coskun, Erdem; Singh, Neenu; Scanlan, Leona D; Jaruga, Pawel; Doak, Shareen H; Dizdaroglu, Miral; Nelson, Bryant C.
Afiliação
  • Coskun E; Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
  • Singh N; Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
  • Scanlan LD; California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I Street, Sacramento, CA 95814, USA.
  • Jaruga P; Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA.
  • Doak SH; Institute of Life Science, Center for NanoHealth, Swansea University Medical School, Wales, SA2 8PP, UK.
  • Dizdaroglu M; Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA.
  • Nelson BC; Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA.
Nanomedicine (Lond) ; 17(26): 2011-2021, 2022 11.
Article em En | MEDLINE | ID: mdl-36853189
ABSTRACT

Aim:

To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials &

methods:

Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts.

Results:

APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions.

Conclusion:

These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.
Inhibitors of DNA repair proteins are increasingly being utilized as potential anticancer agents to supplement traditional chemotherapy and radiation-based approaches. The present study was focused on investigating the use of iron oxide nanoparticles to inhibit the expression of relevant human DNA repair proteins in a cellular model (MCL-5 cells). The authors utilized liquid chromatography­tandem mass spectrometry with isotope dilution to measure the expression levels of two different DNA repair proteins (MTH1 and APE1) in cells after the cells were exposed to increasing levels of the iron oxide nanoparticles. The authors observed significant decreases in DNA repair protein levels that were associated with increasing doses of the iron oxide nanoparticles. The authors' findings warrant more comprehensive studies using other cellular models and suitable animal models.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dextranos / Nanopartículas Magnéticas de Óxido de Ferro Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nanomedicine (Lond) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dextranos / Nanopartículas Magnéticas de Óxido de Ferro Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nanomedicine (Lond) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos