Your browser doesn't support javascript.
loading
Inferring protein fitness landscapes from laboratory evolution experiments.
D'Costa, Sameer; Hinds, Emily C; Freschlin, Chase R; Song, Hyebin; Romero, Philip A.
Afiliação
  • D'Costa S; Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America.
  • Hinds EC; Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America.
  • Freschlin CR; Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America.
  • Song H; Department of Statistics, Pennsylvania State University, State College, Pennsylvania, United States of America.
  • Romero PA; Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America.
PLoS Comput Biol ; 19(3): e1010956, 2023 03.
Article em En | MEDLINE | ID: mdl-36857380
Directed laboratory evolution applies iterative rounds of mutation and selection to explore the protein fitness landscape and provides rich information regarding the underlying relationships between protein sequence, structure, and function. Laboratory evolution data consist of protein sequences sampled from evolving populations over multiple generations and this data type does not fit into established supervised and unsupervised machine learning approaches. We develop a statistical learning framework that models the evolutionary process and can infer the protein fitness landscape from multiple snapshots along an evolutionary trajectory. We apply our modeling approach to dihydrofolate reductase (DHFR) laboratory evolution data and the resulting landscape parameters capture important aspects of DHFR structure and function. We use the resulting model to understand the structure of the fitness landscape and find numerous examples of epistasis but an overall global peak that is evolutionarily accessible from most starting sequences. Finally, we use the model to perform an in silico extrapolation of the DHFR laboratory evolution trajectory and computationally design proteins from future evolutionary rounds.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Aptidão Genética Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Aptidão Genética Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos