Your browser doesn't support javascript.
loading
Studies on the Prediction and Extraction of Methanol and Dimethyl Carbonate by Hydroxyl Ammonium Ionic Liquids.
Wang, Xiaokang; Cui, Yuanyuan; Song, Yingying; Liu, Yifan; Zhang, Junping; Chen, Songsong; Dong, Li; Zhang, Xiangping.
Afiliação
  • Wang X; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.
  • Cui Y; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
  • Song Y; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
  • Liu Y; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
  • Zhang J; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
  • Chen S; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, China.
  • Dong L; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
  • Zhang X; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Molecules ; 28(5)2023 Mar 02.
Article em En | MEDLINE | ID: mdl-36903558
ABSTRACT
The separation of dimethyl carbonate (DMC) and methanol is of great significance in industry. In this study, ionic liquids (ILs) were employed as extractants for the efficient separation of methanol from DMC. Using the COSMO-RS model, the extraction performance of ILs consisting of 22 anions and 15 cations was calculated, and the results showed that the extraction performance of ILs with hydroxylamine as the cation was much better. The extraction mechanism of these functionalized ILs was analyzed by molecular interaction and the σ-profile method. The results showed that the hydrogen bonding energy dominated the interaction force between the IL and methanol, and the molecular interaction between the IL and DMC was mainly Van der Waals force. The molecular interaction changes with the type of anion and cation, which in turn affects the extraction performance of ILs. Five hydroxyl ammonium ILs were screened and synthesized for extraction experiments to verify the reliability of the COSMO-RS model. The results showed that the order of selectivity of ILs predicted by the COSMO-RS model was consistent with the experimental results, and ethanolamine acetate ([MEA][Ac]) had the best extraction performance. After four regeneration and reuse cycles, the extraction performance of [MEA][Ac] was not notably reduced, and it is expected to have industrial applications in the separation of methanol and DMC.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China