Your browser doesn't support javascript.
loading
Steering Bidirectional Sulfur Redox via Geometric/Electronic Mediator Comodulation for Li-S Batteries.
Ding, Yifan; Shi, Zixiong; Sun, Yingjie; Wu, Jianghua; Pan, Xiaoqing; Sun, Jingyu.
Afiliação
  • Ding Y; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, PR China.
  • Shi Z; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, PR China.
  • Sun Y; Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
  • Wu J; National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, PR China.
  • Pan X; National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, PR China.
  • Sun J; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, PR China.
ACS Nano ; 17(6): 6002-6010, 2023 Mar 28.
Article em En | MEDLINE | ID: mdl-36912510
ABSTRACT
Mediator design has stimulated ever-increasing attention to help tackle a surge of detrimental caveats in Li-S realms, mainly pertaining to rampant polysulfide shuttling and sluggish redox kinetics. Nevertheless, universal designing philosophy, despite being highly sought-after, remains still elusive to date. Herein, we present a generic and simple material strategy to allow the target fabrication of advanced mediator toward boosted sulfur electrochemistry. This trick is done by the geometric/electronic comodulation of a prototype VN mediator, where the interplay of its triple-phase interface, favorable catalytic activity, and facile ion diffusivity is conducive to steering bidirectional sulfur redox kinetics. In laboratory tests, the thus-derived Li-S cells manifest impressive cyclic performances with a capacity decay rate of 0.07% per cycle over 500 cycles at 1.0 C. Moreover, under a sulfur loading of 5.0 mg cm-2, the cell could sustain a durable areal capacity of 4.63 mAh cm-2. Our work is anticipated to lay a theory-to-application foundation for rationalizing the design and modulation of reliable polysulfide mediators in working Li-S batteries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2023 Tipo de documento: Article