Your browser doesn't support javascript.
loading
Evaluation of the performance of GeneSoC®, a novel rapid real-time PCR system, to detect Staphylococcus aureus and methicillin resistance in blood cultures.
Chiba, Mikiko; Aoyagi, Tetsuji; Yoshida, Makiko; Katsumi, Makoto; Fujimaki, Shin-Ichi; Ishii, Yoshikazu; Tateda, Kazuhiro; Kaku, Mitsuo.
Afiliação
  • Chiba M; Department of Laboratory Medicine, Tohoku University Hospital, Sendai, Japan.
  • Aoyagi T; Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Tokyo, Japan; Department of Infectious Diseases, Tohoku University Hospital, Sendai, Japan. Electronic address: tetsuji.aoyagi@med.toho-u.ac.jp.
  • Yoshida M; Department of Laboratory Medicine, Tohoku University Hospital, Sendai, Japan; Division of Crisis Management Network for Infectious Diseases, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
  • Katsumi M; Department of Laboratory Medicine, Tohoku University Hospital, Sendai, Japan.
  • Fujimaki SI; Department of Laboratory Medicine, Tohoku University Hospital, Sendai, Japan.
  • Ishii Y; Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Tokyo, Japan.
  • Tateda K; Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Tokyo, Japan.
  • Kaku M; Department of Infectious Diseases, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
J Infect Chemother ; 29(7): 718-721, 2023 Jul.
Article em En | MEDLINE | ID: mdl-36921762
ABSTRACT
Staphylococcus aureus bacteremia results in substantial mortality. Rapid identification and the determination of methicillin susceptibility are crucial for immediate treatment with appropriate antibiotics. In the present study, we aimed to evaluate the basic assay performance of GeneSoC®, a novel rapid quantitative polymerase chain reaction (qPCR) method, for the detection of methicillin-susceptible (MS) or -resistant (MR) S. aureus in blood culture (BC) bottles. qPCR pimers and probes were desinged for femA and mecA genes to diagnose S. aureus and its methicilline-resistance status. GeneSoC® system can detect target genes within 12 min per sample using microfludic thermal cycling. A total of 100 BC-positive samples, showing clusters of gram-positive cocci using microscopy, were tested. The analytical sensitivity was demonstrated for the target sequence of femA and mecA genes at 10 copies/µL, respectively. The detection limit of the MRSA bacterial burden using this system was 104 and 103 CFU/mL for femA and mecA, respectively. Compared with culture-based identification and susceptibility testing, the sensitivity and specificity for the detection of femA (+)/mecA (+) MRSA using GeneSoC® were 90.9 and 98.9%, respectively, whereas the sensitivity and specificity for detection of femA (+)/mecA (-) MSSA were 96.2% and 97.3%, respectively. In conclusion, although this was a small sample and pilot study, the GeneSoC® system is beneficial for rapid, reliable, and highly sensitive real-time testing of MRSA and MSSA in BC bottles.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Staphylococcus aureus Resistente à Meticilina Limite: Humans Idioma: En Revista: J Infect Chemother Assunto da revista: MICROBIOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Estafilocócicas / Staphylococcus aureus Resistente à Meticilina Limite: Humans Idioma: En Revista: J Infect Chemother Assunto da revista: MICROBIOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Japão