Your browser doesn't support javascript.
loading
Design and Assembly of a Biofactory for (2S)-Naringenin Production in Escherichia coli: Effects of Oxygen Transfer on Yield and Gene Expression.
Parra Daza, Laura E; Suarez Medina, Lina; Tafur Rangel, Albert E; Fernández-Niño, Miguel; Mejía-Manzano, Luis Alberto; González-Valdez, José; Reyes, Luis H; González Barrios, Andrés Fernando.
Afiliação
  • Parra Daza LE; Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia.
  • Suarez Medina L; Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia.
  • Tafur Rangel AE; Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia.
  • Fernández-Niño M; Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia.
  • Mejía-Manzano LA; Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, 06120 Halle, Germany.
  • González-Valdez J; Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico.
  • Reyes LH; Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico.
  • González Barrios AF; Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia.
Biomolecules ; 13(3)2023 03 20.
Article em En | MEDLINE | ID: mdl-36979500
The molecule (2S)-naringenin is a scaffold molecule with several nutraceutical properties. Currently, (2S)-naringenin is obtained through chemical synthesis and plant isolation. However, these methods have several drawbacks. Thus, heterologous biosynthesis has emerged as a viable alternative to its production. Recently, (2S)-naringenin production studies in Escherichia coli have used different tools to increase its yield up to 588 mg/L. In this study, we designed and assembled a bio-factory for (2S)-naringenin production. Firstly, we used several parametrized algorithms to identify the shortest pathway for producing (2S)-naringenin in E. coli, selecting the genes phenylalanine ammonia lipase (pal), 4-coumarate: CoA ligase (4cl), chalcone synthase (chs), and chalcone isomerase (chi) for the biosynthetic pathway. Then, we evaluated the effect of oxygen transfer on the production of (2S)-naringenin at flask (50 mL) and bench (4 L culture) scales. At the flask scale, the agitation rate varied between 50 rpm and 250 rpm. At the bench scale, the dissolved oxygen was kept constant at 5% DO (dissolved oxygen) and 40% DO, obtaining the highest (2S)-naringenin titer (3.11 ± 0.14 g/L). Using genome-scale modeling, gene expression analysis (RT-qPCR) of oxygen-sensitive genes was obtained.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Flavanonas / Escherichia coli Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomolecules Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Colômbia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Flavanonas / Escherichia coli Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomolecules Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Colômbia