Your browser doesn't support javascript.
loading
Deriving spatially explicit direct and indirect interaction networks from animal movement data.
Yang, Anni; Wilber, Mark Q; Manlove, Kezia R; Miller, Ryan S; Boughton, Raoul; Beasley, James; Northrup, Joseph; VerCauteren, Kurt C; Wittemyer, George; Pepin, Kim.
Afiliação
  • Yang A; Department of Geography and Environmental Sustainability University of Oklahoma Oklahoma Norman USA.
  • Wilber MQ; Department of Fish, Wildlife and Conservation Biology Colorado State University Colorado Fort Collins USA.
  • Manlove KR; United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center Colorado Fort Collins USA.
  • Miller RS; Forestry, Wildlife, and Fisheries, Institute of Agriculture University of Tennessee Tennessee Knoxville USA.
  • Boughton R; Department of Wildland Resources and Ecology Center Utah State University Utah Logan USA.
  • Beasley J; Center for Epidemiology and Animal Health United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service Colorado Fort Collins USA.
  • Northrup J; Archbold Biological Station Buck Island Ranch Florida Lake Placid USA.
  • VerCauteren KC; Savannah River Ecology Laboratory Warnell School of Forestry and Natural Resources University of Georgia South Carolina Aiken USA.
  • Wittemyer G; Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Ontario Peterborough Canada.
  • Pepin K; United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center Colorado Fort Collins USA.
Ecol Evol ; 13(3): e9774, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36993145
Quantifying spatiotemporally explicit interactions within animal populations facilitates the understanding of social structure and its relationship with ecological processes. Data from animal tracking technologies (Global Positioning Systems ["GPS"]) can circumvent longstanding challenges in the estimation of spatiotemporally explicit interactions, but the discrete nature and coarse temporal resolution of data mean that ephemeral interactions that occur between consecutive GPS locations go undetected. Here, we developed a method to quantify individual and spatial patterns of interaction using continuous-time movement models (CTMMs) fit to GPS tracking data. We first applied CTMMs to infer the full movement trajectories at an arbitrarily fine temporal scale before estimating interactions, thus allowing inference of interactions occurring between observed GPS locations. Our framework then infers indirect interactions-individuals occurring at the same location, but at different times-while allowing the identification of indirect interactions to vary with ecological context based on CTMM outputs. We assessed the performance of our new method using simulations and illustrated its implementation by deriving disease-relevant interaction networks for two behaviorally differentiated species, wild pigs (Sus scrofa) that can host African Swine Fever and mule deer (Odocoileus hemionus) that can host chronic wasting disease. Simulations showed that interactions derived from observed GPS data can be substantially underestimated when temporal resolution of movement data exceeds 30-min intervals. Empirical application suggested that underestimation occurred in both interaction rates and their spatial distributions. CTMM-Interaction method, which can introduce uncertainties, recovered majority of true interactions. Our method leverages advances in movement ecology to quantify fine-scale spatiotemporal interactions between individuals from lower temporal resolution GPS data. It can be leveraged to infer dynamic social networks, transmission potential in disease systems, consumer-resource interactions, information sharing, and beyond. The method also sets the stage for future predictive models linking observed spatiotemporal interaction patterns to environmental drivers.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Ecol Evol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Ecol Evol Ano de publicação: 2023 Tipo de documento: Article