Your browser doesn't support javascript.
loading
Evaluating The Precocial-altricial Axis of Motor Skill at Birth in A Preterm Pig Model.
Young, Jesse W; Mayerl, Christopher J; Mannava, Alekhya; Lewis, Claire; Fan, Tianhui; Nair, Manas; Mamone, Christopher; Schapker, Nicole M; Mossor, Angela M; German, Rebecca Z.
Afiliação
  • Young JW; School of Biomedical Sciences, Kent State University, Kent OH 44242, USA.
  • Mayerl CJ; Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown OH 44272, USA.
  • Mannava A; Department of Biological Sciences, Northern Arizona University, Flagstaff AZ 86011, USA.
  • Lewis C; Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown OH 44272, USA.
  • Fan T; Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown OH 44272, USA.
  • Nair M; Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown OH 44272, USA.
  • Mamone C; Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown OH 44272, USA.
  • Schapker NM; Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown OH 44272, USA.
  • Mossor AM; School of Biomedical Sciences, Kent State University, Kent OH 44242, USA.
  • German RZ; Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown OH 44272, USA.
Integr Comp Biol ; 63(3): 625-640, 2023 09 15.
Article em En | MEDLINE | ID: mdl-37024270
ABSTRACT
The pace of locomotor development is a critical component of lifetime evolutionary fitness. Developmental researchers often divide species into two broad categories based on functional competence at birth precocial infants who can independently stand and locomote soon after birth versus altricial infants who are either incapable of independent movement or can only do so in a rudimentary manner. However, investigating the lower level neuromotor and biomechanical traits that account for perinatal variation in motor development is complicated by the lack of experimental control inherent to all comparative analyses. Precocial and altricial animals often differ along a host of dimensions that can obfuscate the specific factors controlling motor development per se. Here, we propose an alternative approach of examining locomotor development in a nominally precocial species-the domestic pig (Sus scrofa)-in which gestation length has been experimentally manipulated, thereby creating "functionally altricial" cohorts for comparison. We have used standard biomechanical testing to evaluate balance and locomotor performance in preterm pigs born at 94% full-term gestation (N = 29 individuals) and compared these data to a similar dataset on age-matched full-term piglets (N = 15 individuals). Static balance tests showed that preterm pigs were characterized by increased postural sway, particularly in the fore-aft (anteroposterior) direction. Locomotor analyses showed that preterm piglets tended to take shorter, more frequent strides, use higher duty factors, and preferentially choose gait patterns that ensured they were supported by at least three limbs during most of the stride cycle, though differences between preterm and full-term animals were often modulated by variation in locomotor speed. Morphometric analysis showed no differences in relative extensor muscle mass between preterm and full-term animals, suggesting that neurological immaturity might be more determinant of preterm piglet motor dysfunctions than musculoskeletal immaturity per se (though much work remains to be done to fully document the neuromotor phenotype of the preterm infant pig model). In many ways, the postural and locomotor deficits shown by the preterm piglets paralleled the locomotor phenotype of altricial mammals. Overall, our study demonstrates the utility of a "within-species" design for studying the biomechanical correlates and neuromotor basis of evolutionary variation in motor skill at birth.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Físico Animal / Destreza Motora Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Newborn / Pregnancy Idioma: En Revista: Integr Comp Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Condicionamento Físico Animal / Destreza Motora Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Newborn / Pregnancy Idioma: En Revista: Integr Comp Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos