Your browser doesn't support javascript.
loading
Construction of graphene quantum dot-based dissolving microneedle patches for the treatment of bacterial keratitis.
Fang, Yirong; Zhuo, Lin; Yuan, Hang; Zhao, Hao; Zhang, Lishu.
Afiliação
  • Fang Y; Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China.
  • Zhuo L; Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China.
  • Yuan H; Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China.
  • Zhao H; Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China.
  • Zhang L; Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China. Electronic address: zhanglishu@wmu.edu.cn.
Int J Pharm ; 639: 122945, 2023 May 25.
Article em En | MEDLINE | ID: mdl-37044225
ABSTRACT
Bacterial keratitis (BK) is an ophthalmic infection caused by bacteria and poses a risk of blindness. Numerous drugs have been used to treat BK, the majority suffered from limited effect owing to their backward antimicrobial and delivery efficacy. Herein, we evaluated the antibacterial effect of a cationic carbon-based nanomaterial, i.e., imidazole-modified graphene quantum dots (IMZ-GQDs), which exhibits disinfection rates of >90% against three typical Gram-positive strains within 3 h owing to the loss of membrane integrity and decline in membrane potential. For ocular application, we further developed IMZ-GQDs-loaded dissolving microneedle patches (IMZ-GQDs MNs) via a typical two-step micromolding method. IMZ-GQDs MNs showed sufficient dissolution and penetration for intrastromal delivery in vitro and successfully overcome the rabbit corneal epithelial layer in vivo. The excellent biocompatibility of IMZ-GQDs MNs was demonstrated both in cell and animal models, and they exhibited low cytotoxicity, low invasiveness and low ocular irritation. The topical application of IMZ-GQDs MNs has the benefits of both high antibacterial activity and effective drug delivery, thereby leading to the resolution of Staphylococcus aureus-induced BK in rabbits in 7 days. Therefore, IMZ-GQDs MNs is a promising approach for BK treatment, which is safe and efficient.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Oculares Bacterianas / Pontos Quânticos / Grafite / Ceratite Limite: Animals Idioma: En Revista: Int J Pharm Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções Oculares Bacterianas / Pontos Quânticos / Grafite / Ceratite Limite: Animals Idioma: En Revista: Int J Pharm Ano de publicação: 2023 Tipo de documento: Article