Your browser doesn't support javascript.
loading
Long-term nitrogen deposition inhibits soil priming effects by enhancing phosphorus limitation in a subtropical forest.
Wang, Xiaohong; Li, Shiyining; Zhu, Biao; Homyak, Peter M; Chen, Guangshui; Yao, Xiaodong; Wu, Dongmei; Yang, Zhijie; Lyu, Maokui; Yang, Yusheng.
Afiliação
  • Wang X; Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
  • Li S; State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou, China.
  • Zhu B; Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
  • Homyak PM; State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou, China.
  • Chen G; Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China.
  • Yao X; Department of Environmental Sciences, University of California, Riverside, California, USA.
  • Wu D; Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
  • Yang Z; State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou, China.
  • Lyu M; Fujian Sanming Forest Ecosystem National Observation and Research Station, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
  • Yang Y; State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou, China.
Glob Chang Biol ; 29(14): 4081-4093, 2023 07.
Article em En | MEDLINE | ID: mdl-37096422
ABSTRACT
It is widely accepted that phosphorus (P) limits microbial metabolic processes and thus soil organic carbon (SOC) decomposition in tropical forests. Global change factors like elevated atmospheric nitrogen (N) deposition can enhance P limitation, raising concerns about the fate of SOC. However, how elevated N deposition affects the soil priming effect (PE) (i.e., fresh C inputs induced changes in SOC decomposition) in tropical forests remains unclear. We incubated soils exposed to 9 years of experimental N deposition in a subtropical evergreen broadleaved forest with two types of 13 C-labeled substrates of contrasting bioavailability (glucose and cellulose) with and without P amendments. We found that N deposition decreased soil total P and microbial biomass P, suggesting enhanced P limitation. In P unamended soils, N deposition significantly inhibited the PE. In contrast, adding P significantly increased the PE under N deposition and by a larger extent for the PE of cellulose (PEcellu ) than the PE of glucose (PEglu ). Relative to adding glucose or cellulose solely, adding P with glucose alleviated the suppression of soil microbial biomass and C-acquiring enzymes induced by N deposition, whereas adding P with cellulose attenuated the stimulation of acid phosphatase (AP) induced by N deposition. Across treatments, the PEglu increased as C-acquiring enzyme activity increased, whereas the PEcellu increased as AP activity decreased. This suggests that P limitation, enhanced by N deposition, inhibits the soil PE through varying mechanisms depending on substrate bioavailability; that is, P limitation regulates the PEglu by affecting soil microbial growth and investment in C acquisition, whereas regulates the PEcellu by affecting microbial investment in P acquisition. These findings provide new insights for tropical forests impacted by N loading, suggesting that expected changes in C quality and P limitation can affect the long-term regulation of the soil PE.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Carbono Idioma: En Revista: Glob Chang Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Solo / Carbono Idioma: En Revista: Glob Chang Biol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China