Your browser doesn't support javascript.
loading
Epistemic uncertainty in Bayesian predictive probabilities.
Liu, Charles C; Yu, Ron Xiaolong.
Afiliação
  • Liu CC; Department of Biostatistics, Gilead Sciences, Foster City, CA, USA.
  • Yu RX; Department of Biostatistics, Gilead Sciences, Foster City, CA, USA.
J Biopharm Stat ; 34(3): 394-412, 2024 May.
Article em En | MEDLINE | ID: mdl-37157818
Bayesian predictive probabilities have become a ubiquitous tool for design and monitoring of clinical trials. The typical procedure is to average predictive probabilities over the prior or posterior distributions. In this paper, we highlight the limitations of relying solely on averaging, and propose the reporting of intervals or quantiles for the predictive probabilities. These intervals formalize the intuition that uncertainty decreases with more information. We present four different applications (Phase 1 dose escalation, early stopping for futility, sample size re-estimation, and assurance/probability of success) to demonstrate the practicality and generality of the proposed approach.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biopharm Stat Assunto da revista: FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biopharm Stat Assunto da revista: FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos