Epistemic uncertainty in Bayesian predictive probabilities.
J Biopharm Stat
; 34(3): 394-412, 2024 May.
Article
em En
| MEDLINE
| ID: mdl-37157818
Bayesian predictive probabilities have become a ubiquitous tool for design and monitoring of clinical trials. The typical procedure is to average predictive probabilities over the prior or posterior distributions. In this paper, we highlight the limitations of relying solely on averaging, and propose the reporting of intervals or quantiles for the predictive probabilities. These intervals formalize the intuition that uncertainty decreases with more information. We present four different applications (Phase 1 dose escalation, early stopping for futility, sample size re-estimation, and assurance/probability of success) to demonstrate the practicality and generality of the proposed approach.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Projetos de Pesquisa
/
Modelos Estatísticos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
J Biopharm Stat
Assunto da revista:
FARMACOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos