Your browser doesn't support javascript.
loading
Effect of Different Carbons on Lipid Production and SNF1 Transcription in Mucor Circinelloides.
Zhang, Yao; Yang, Yueping; Zhang, Han; Liu, Qiu; Song, Yuanda.
Afiliação
  • Zhang Y; Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022 People's Republic of China.
  • Yang Y; Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People's Republic of China.
  • Zhang H; Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People's Republic of China.
  • Liu Q; Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People's Republic of China.
  • Song Y; Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People's Republic of China.
Indian J Microbiol ; 63(1): 146-151, 2023 Mar.
Article em En | MEDLINE | ID: mdl-37188240
ABSTRACT
Sucrose non-fermenting 1 (SNF1) protein kinase plays an important role in the utilization of selective carbon sources and regulation of lipid metabolism. In order to further explore the function of SNF1 in regulating lipid accumulation by responding nutritional signals from non-glucose carbon sources, in the present study, the lipid production and SNF1 transcriptional levels of Mucor circinelloides were analyzed and compared on different carbon sources. The results indicated that M. circinelloides could effectively utilize some secondary metabolic carbon sources of monosaccharides and disaccharides for growth and lipids production, such as fructose, maltose and galactose. Snf-ß subunit was associated with the regulation of lipid metabolism in response to nutritional signals from different carbon sources. This is the first report on the transcriptional analysis of SNF1 subunits on different carbons metabolism in oleaginous filamentous fungi. This research has suggested that genetic engineering of SNF1 subunits will alter the lipid production of M. circinelloides from alternative carbon sources. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01070-z.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Indian J Microbiol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Indian J Microbiol Ano de publicação: 2023 Tipo de documento: Article