Your browser doesn't support javascript.
loading
The evolution of fast-growing coral reef fishes.
Siqueira, Alexandre C; Yan, Helen F; Morais, Renato A; Bellwood, David R.
Afiliação
  • Siqueira AC; Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia. alexandre.siqueira@my.jcu.edu.au.
  • Yan HF; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia. alexandre.siqueira@my.jcu.edu.au.
  • Morais RA; Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.
  • Bellwood DR; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.
Nature ; 618(7964): 322-327, 2023 Jun.
Article em En | MEDLINE | ID: mdl-37198484
ABSTRACT
Individual growth is a fundamental life history trait1-4, yet its macroevolutionary trajectories have rarely been investigated for entire animal assemblages. Here we analyse the evolution of growth in a highly diverse vertebrate assemblage-coral reef fishes. We combine state-of-the-art extreme gradient boosted regression trees with phylogenetic comparative methods to detect the timing, number, location and magnitude of shifts in the adaptive regime of somatic growth. We also explored the evolution of the allometric relationship between body size and growth. Our results show that the evolution of fast growth trajectories in reef fishes has been considerably more common than the evolution of slow growth trajectories. Many reef fish lineages shifted towards faster growth and smaller body size evolutionary optima in the Eocene (56-33.9 million years ago), pointing to a major expansion of life history strategies in this Epoch. Of all lineages examined, the small-bodied, high-turnover cryptobenthic fishes shifted most towards extremely high growth optima, even after accounting for body size allometry. These results suggest that the high global temperatures of the Eocene5 and subsequent habitat reconfigurations6 might have been critical for the rise and retention of the highly productive, high-turnover fish faunas that characterize modern coral reef ecosystems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Evolução Biológica / Recifes de Corais / Peixes Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Evolução Biológica / Recifes de Corais / Peixes Limite: Animals Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Austrália