Your browser doesn't support javascript.
loading
Variations of PM2.5-bound elements and their associated effects during long-distance transport of dust storms: Insights from multi-sites observations.
Meng, Qingpeng; Yan, Caiqing; Li, Ruiyu; Zhang, Tianle; Zheng, Mei; Liu, Yue; Zhang, Miao; Wang, Guixia; Du, Yuming; Shang, Chunlin; Fu, Peng.
Afiliação
  • Meng Q; Environment Research Institute, Shandong University, Qingdao 266237, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
  • Yan C; Environment Research Institute, Shandong University, Qingdao 266237, China. Electronic address: cyan0325@sdu.edu.cn.
  • Li R; Environment Research Institute, Shandong University, Qingdao 266237, China.
  • Zhang T; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Zheng M; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
  • Liu Y; Center for Environmental Metrology, National Institute of Metrology China, Beijing 100029, China.
  • Zhang M; Shandong Provincial Eco-Environment Monitoring, Jinan 250101, China.
  • Wang G; Shandong Provincial Eco-Environment Monitoring, Jinan 250101, China.
  • Du Y; Wuhai Environmental Monitoring Center Station, Inner Mongolia 01600, China.
  • Shang C; Wuhai Environmental Monitoring Center Station, Inner Mongolia 01600, China.
  • Fu P; Sailhero Environmental Protection High-tech Co., Ltd, Shijiazhuang 050035, China.
Sci Total Environ ; 889: 164062, 2023 Sep 01.
Article em En | MEDLINE | ID: mdl-37207767
ABSTRACT
Dust storms are a significant concern because of their adverse effects on ambient air quality and human health. To investigate the evolution of dust storms during long-distance transport and its impacts on air quality and human health risks in cities along the transport pathway, we monitored the major fraction of dust (i.e., particle-bound elements) online in four cities in northern China during March 2021. Three dust events originating from the Gobi Desert of North China and Mongolia and the Taklimakan Desert of Northwest China were captured. We investigated the source regions of dust storms using daily multi-sensor absorbing aerosol index products, backward trajectories, and specific element ratios, identified and quantified sources of particle-bound elements using Positive Matrix Factorization model, and calculated the carcinogenic and non-carcinogenic risks of elements using a health risk assessment model. Our results indicated that under the influence of dust storms, mass concentrations of crustal elements increased up to dozens of times in cities near the dust source and up to ten times in cities farther from the source. In contrast, anthropogenic elements increased less or even decreased, depending on the relative contributions of the increase caused by accumulation of dust itself and entrainment along the transport path and the decrease caused by dilution of high wind speeds. Si/Fe ratio was found to be a valuable indicator for characterizing the attenuation of the amount of dust along its transport pathways, especially for the case originated from northern source regions. This study highlights the significant role of source regions, intensity and attenuation rates of dust storms, and wind speeds in determining the increased levels of element concentrations during dust storms and its associated impacts on downwind areas. Furthermore, non-carcinogenic risks of particle-bound elements increased at all sites during dust events, emphasizing the importance of personal exposure protection during dust storms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Poluição do Ar Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Poluição do Ar Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China