Your browser doesn't support javascript.
loading
Metal binding pharmacophore click-derived discovery of new broad-spectrum metallo-ß-lactamase inhibitors.
Yan, Yu-Hang; Ding, Hao-Sheng; Zhu, Kai-Rong; Mu, Bin-Song; Zheng, Yang; Huang, Meng-Yi; Zhou, Cong; Li, Wen-Fang; Wang, Zhenling; Wu, Yong; Li, Guo-Bo.
Afiliação
  • Yan YH; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Ding HS; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Zhu KR; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Mu BS; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Zheng Y; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Huang MY; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Zhou C; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Li WF; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Wang Z; State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
  • Wu Y; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
  • Li GB; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, Ch
Eur J Med Chem ; 257: 115473, 2023 Sep 05.
Article em En | MEDLINE | ID: mdl-37209449
ABSTRACT
The emergence of metallo-ß-lactamases (MBLs) confers resistance to nearly all the ß-lactam antibiotics, including carbapenems. Currently, there is a lack of clinically useful MBL inhibitors, making it crucial to discover new inhibitor chemotypes that can potently target multiple clinically relevant MBLs. Herein we report a strategy that utilizes a metal binding pharmacophore (MBP) click approach to identify new broad-spectrum MBL inhibitors. Our initial investigation identified several MBPs including phthalic acid, phenylboronic acid and benzyl phosphoric acid, which were subjected to structural transformations using azide-alkyne click reactions. Subsequent structure-activity relationship analyses led to the identification of several potent broad-spectrum MBL inhibitors, including 73 that manifested IC50 values ranging from 0.00012 µM to 0.64 µM against multiple MBLs. Co-crystallographic studies demonstrated the importance of MBPs in engaging with the MBL active site anchor pharmacophore features, and revealed the unusual two-molecule binding modes with IMP-1, highlighting the critical role of flexible active site loops in recognizing structurally diverse substrates/inhibitors. Our work provides new chemotypes for MBL inhibition and establishes a MBP click-derived paradigm for inhibitor discovery targeting MBLs as well as other metalloenzymes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inibidores de beta-Lactamases / Farmacóforo Idioma: En Revista: Eur J Med Chem Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inibidores de beta-Lactamases / Farmacóforo Idioma: En Revista: Eur J Med Chem Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça