Your browser doesn't support javascript.
loading
Aerosol Particle Size Influences the Infectious Dose and Disease Severity in a Golden Syrian Hamster Model of Inhalational COVID-19.
Boydston, Jeremy A; Biryukov, Jennifer; Yeager, John J; Zimmerman, Heather A; Williams, Gregory; Green, Brian; Reese, Amy L; Beck, Katie; Bohannon, Jordan K; Miller, David; Freeburger, Denise; Graham, Amanda; Wahl, Victoria; Hevey, Michael C; Dabisch, Paul A.
Afiliação
  • Boydston JA; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Biryukov J; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Yeager JJ; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Zimmerman HA; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Williams G; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Green B; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Reese AL; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Beck K; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Bohannon JK; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Miller D; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Freeburger D; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Graham A; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Wahl V; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Hevey MC; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
  • Dabisch PA; National Biodefense Analysis and Countermeasures Center (NBACC), Operated by Battelle National Biodefense Institute for the US Department of Homeland Security, Frederick, Maryland, USA.
J Aerosol Med Pulm Drug Deliv ; 36(5): 235-245, 2023 10.
Article em En | MEDLINE | ID: mdl-37262184
Background: Significant evidence suggests that SARS-CoV-2 can be transmitted via respiratory aerosols, which are known to vary as a function of respiratory activity. Most animal models examine disease presentation following inhalation of small-particle aerosols similar to those generated during quiet breathing or speaking. However, despite evidence that particle size can influence dose-infectivity relationships and disease presentation for other microorganisms, no studies have examined the infectivity of SARS-CoV-2 contained in larger particle aerosols similar to those produced during coughing, singing, or talking. Therefore, the aim of the present study was to assess the influence of aerodynamic diameter on the infectivity and virulence of aerosols containing SARS-CoV-2 in a hamster model of inhalational COVID-19. Methods: Dose-response relationships were assessed for two different aerosol particle size distributions, with mass median aerodynamic diameters (MMADs) of 1.3 and 5.2 µm in groups of Syrian hamsters exposed to aerosols containing SARS-CoV-2. Results: Disease was characterized by viral shedding in oropharyngeal swabs, increased respiratory rate, decreased activity, and decreased weight gain. Aerosol particle size significantly influenced the median doses to induce seroconversion and viral shedding, with both increasing ∼30-fold when the MMAD was increased. In addition, disease presentation was dose-dependent, with seroconversion and viral shedding occurring at lower doses than symptomatic disease characterized by increased respiratory rate and decreased activity. Conclusions: These results suggest that aerosol particle size may be an important factor influencing the risk of COVID-19 transmission and needs to be considered when developing animal models of disease. This result agrees with numerous previous studies with other microorganisms and animal species, suggesting that it would be generally translatable across different species. However, it should be noted that the absolute magnitude of the observed shifts in the median doses obtained with the specific particle sizes utilized herein may not be directly applicable to other species.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Aerosol Med Pulm Drug Deliv Assunto da revista: TERAPIA POR MEDICAMENTOS Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Aerosol Med Pulm Drug Deliv Assunto da revista: TERAPIA POR MEDICAMENTOS Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos