Your browser doesn't support javascript.
loading
Redox-responsive microemulsion: Fabrication and application to curcumin encapsulation.
Zhang, Yongmin; Mu, Meng; Zhou, Yue; Xie, Huan; Zhao, Shanjuan.
Afiliação
  • Zhang Y; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Green Cleaning Technology and Detergents of Zhejiang Province, Hangzhou 310056, PR China. Electronic address:
  • Mu M; Petroleum Engineering Technology Research Institute of Shengli Oilfield, SINOPEC, Dongying, Shandong 257067, China.
  • Zhou Y; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China.
  • Xie H; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China.
  • Zhao S; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China.
J Colloid Interface Sci ; 647: 384-394, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37269735
HYPOTHESIS: Stimulus-responsive microemulsions have aroused significant attention because of their versatile and reversible switchability between stable and unstable states. However, most stimuli-responsive microemulsions are based on stimuli-responsive surfactants. We posit that the change in the hydrophilicity of a selenium-containing alcohol triggered by a mild redox reaction could also influence the stability of microemulsions and provide a new nanoplatform for the delivery of bioactive substances. EXPERIMENTS: A selenium-containing diol (3,3'-selenobis(propan-1-ol), PSeP) was designed and used as a co-surfactant in a microemulsion with ethoxylated hydrogenated castor oil (HCO40), diethylene glycol monohexyl ether (DGME), 2-n-octyl-1-dodecanol (ODD) and water. The redox-induced transition in PSeP was characterized by 1H NMR, 77Se NMR, and MS. The redox-responsiveness of the ODD/HCO40/DGME/PSeP/water microemulsion was investigated through determination of a pseudo-ternary phase diagram, analysis by dynamic light scattering, and electrical conductivity, and its encapsulation performance was evaluated by determination of the solubility, stability, antioxidant activity, and skin penetrability of encapsulated curcumin. FINDINGS: The redox conversion of PSeP enabled efficient switching of ODD/HCO40/DGME/PSeP/water microemulsions. Addition of oxidant (H2O2), oxidized PSeP into more hydrophilic PSeP-Ox (selenoxide), disrupting the emulsifying capacity of the combination of HCO40/DGME/PSeP, markedly reducing the monophasic microemulsion region in the phase diagram, and inducing phase separation in some formulations. Addition of reductant (N2H4·H2O), reduced PSeP-Ox and restored the emulsifying capacity of the combination of HCO40/DGME/PSeP. In addition, PSeP-based microemulsions can significantly enhance the solubility in oil (by 23 times), stability, antioxidant capacity (DPPH∙ radical scavenging by 91.74 %), and skin penetrability of curcumin, showing clear potential for encapsulation and delivery of curcumin and other bioactive substances.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2023 Tipo de documento: Article