Your browser doesn't support javascript.
loading
Molecular mechanism of synovial joint site specification and induction in developing vertebrate limbs.
Yadav, Upendra S; Biswas, Tathagata; Singh, Pratik N; Gupta, Pankaj; Chakraborty, Soura; Delgado, Irene; Zafar, Hamim; Capellini, Terence D; Torres, Miguel; Bandyopadhyay, Amitabha.
Afiliação
  • Yadav US; Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Biswas T; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Singh PN; Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Gupta P; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Chakraborty S; Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Delgado I; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Zafar H; Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Capellini TD; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Torres M; Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
  • Bandyopadhyay A; Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain.
Development ; 150(13)2023 07 01.
Article em En | MEDLINE | ID: mdl-37272420
The vertebrate appendage comprises three primary segments, the stylopod, zeugopod and autopod, each separated by joints. The molecular mechanisms governing the specification of joint sites, which define segment lengths and thereby limb architecture, remain largely unknown. Existing literature suggests that reciprocal gradients of retinoic acid (RA) and fibroblast growth factor (FGF) signaling define the expression domains of the putative segment markers Meis1, Hoxa11 and Hoxa13. Barx1 is expressed in the presumptive joint sites. Our data demonstrate that RA-FGF signaling gradients define the expression domain of Barx1 in the first presumptive joint site. When misexpressed, Barx1 induces ectopic interzone-like structures, and its loss of function partially blocks interzone development. Simultaneous perturbations of RA-FGF signaling gradients result in predictable shifts of Barx1 expression domains along the proximo-distal axis and, consequently, in the formation of repositioned joints. Our data suggest that during early limb bud development in chick, Meis1 and Hoxa11 expression domains are overlapping, whereas the Barx1 expression domain resides within the Hoxa11 expression domain. However, once the interzone is formed, the expression domains are refined and the Barx1 expression domain becomes congruent with the border of these two putative segment markers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Articulações Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Development Assunto da revista: BIOLOGIA / EMBRIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Articulações Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Development Assunto da revista: BIOLOGIA / EMBRIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Índia