Your browser doesn't support javascript.
loading
Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores.
Niu, Wenhui; Fu, Yubin; Serra, Gianluca; Liu, Kun; Droste, Jörn; Lee, Yeonju; Ling, Zhitian; Xu, Fugui; Cojal González, José D; Lucotti, Andrea; Rabe, Jürgen P; Ryan Hansen, Michael; Pisula, Wojciech; Blom, Paul W M; Palma, Carlos-Andres; Tommasini, Matteo; Mai, Yiyong; Ma, Ji; Feng, Xinliang.
Afiliação
  • Niu W; Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
  • Fu Y; Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Serra G; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Liu K; Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
  • Droste J; Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Lee Y; Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
  • Ling Z; Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany.
  • Xu F; Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.
  • Cojal González JD; Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
  • Lucotti A; Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.
  • Rabe JP; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Ryan Hansen M; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Pisula W; Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.
  • Blom PWM; Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
  • Palma CA; Department of Physics & IRIS Adlershof-, Humboldt-Universität zu Berlin, 12489, Berlin, Germany.
  • Tommasini M; Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.
  • Mai Y; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Ma J; Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland.
  • Feng X; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Angew Chem Int Ed Engl ; 62(35): e202305737, 2023 Aug 28.
Article em En | MEDLINE | ID: mdl-37335764
ABSTRACT
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha