Your browser doesn't support javascript.
loading
New Insights on the Size-Dependent Inhibition of Enzymes by Gold Nanoparticles.
Chen, Wen-Qi; Wu, Wen-Jing; Yu, Ying-Qi; Liu, Yi; Jiang, Feng-Lei.
Afiliação
  • Chen WQ; Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
  • Wu WJ; Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
  • Yu YQ; Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
  • Liu Y; Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
  • Jiang FL; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
Langmuir ; 39(27): 9595-9603, 2023 07 11.
Article em En | MEDLINE | ID: mdl-37366026
ABSTRACT
Particle size might affect the inhibition behaviors of gold nanoparticles (AuNPs) on enzyme activity by influencing the density of binding sites (ρ), the association constant (Ka), the steric hindrance of enzymes by AuNPs, the binding orientations of the enzyme on AuNPs, as well as the structural changes of enzymes. In previous studies, the effects of the above-mentioned factors, which could not be ignored in the applications of enzymatic electrochemistry, were often overshadowed by the effects of surface area. In order to study the size effect on the inhibition types and inhibitory ability of enzymes by AuNPs, we investigated the inhibition behaviors of chymotrypsin (ChT) by AuNPs with three different sizes (D1-AuNCs, D3-AuNPs, and D6-AuNPs) under the same surface area concentration. The results showed that both of the inhibition types and the inhibition ability varied with the particle size of AuNPs. D1-AuNCs inhibited ChT noncompetitively, while D3/D6-AuNPs inhibited ChT competitively. Contrary to the common sense, D6-AuNPs showed a weaker inhibitory ability than D3-AuNPs. By means of zeta potential, agarose gel electrophoresis, isothermal titration calorimetry, synchronous fluorescence spectroscopy, and circular dichroism, the mechanism of the weak inhibitory ability of D6-AuNPs was found to be the standing binding orientation caused by the small curvature. This work had certain guiding significance for the biosafety of AuNPs, the development of nanoinhibitors, as well as the applications of AuNPs in enzymatic electrochemistry.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article