Your browser doesn't support javascript.
loading
In Silico and In Vitro Identification of P-Glycoprotein Inhibitors from a Library of 375 Phytochemicals.
Schäfer, Julia; Klösgen, Vincent Julius; Omer, Ejlal A; Kadioglu, Onat; Mbaveng, Armelle T; Kuete, Victor; Hildebrandt, Andreas; Efferth, Thomas.
Afiliação
  • Schäfer J; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
  • Klösgen VJ; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
  • Omer EA; Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany.
  • Kadioglu O; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
  • Mbaveng AT; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
  • Kuete V; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon.
  • Hildebrandt A; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon.
  • Efferth T; Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article em En | MEDLINE | ID: mdl-37373385
ABSTRACT
Cancer therapy with clinically established anticancer drugs is frequently hampered by the development of drug resistance of tumors and severe side effects in normal organs and tissues. The demand for powerful, but less toxic, drugs is high. Phytochemicals represent an important reservoir for drug development and frequently exert less toxicity than synthetic drugs. Bioinformatics can accelerate and simplify the highly complex, time-consuming, and expensive drug development process. Here, we analyzed 375 phytochemicals using virtual screenings, molecular docking, and in silico toxicity predictions. Based on these in silico studies, six candidate compounds were further investigated in vitro. Resazurin assays were performed to determine the growth-inhibitory effects towards wild-type CCRF-CEM leukemia cells and their multidrug-resistant, P-glycoprotein (P-gp)-overexpressing subline, CEM/ADR5000. Flow cytometry was used to measure the potential to measure P-gp-mediated doxorubicin transport. Bidwillon A, neobavaisoflavone, coptisine, and z-guggulsterone all showed growth-inhibitory effects and moderate P-gp inhibition, whereas miltirone and chamazulene strongly inhibited tumor cell growth and strongly increased intracellular doxorubicin uptake. Bidwillon A and miltirone were selected for molecular docking to wildtype and mutated P-gp forms in closed and open conformations. The P-gp homology models harbored clinically relevant mutations, i.e., six single missense mutations (F336Y, A718C, Q725A, F728A, M949C, Y953C), three double mutations (Y310A-F728A; F343C-V982C; Y953A-F978A), or one quadruple mutation (Y307C-F728A-Y953A-F978A). The mutants did not show major differences in binding energies compared to wildtypes. Closed P-gp forms generally showed higher binding affinities than open ones. Closed conformations might stabilize the binding, thereby leading to higher binding affinities, while open conformations may favor the release of compounds into the extracellular space. In conclusion, this study described the capability of selected phytochemicals to overcome multidrug resistance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistencia a Medicamentos Antineoplásicos / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistencia a Medicamentos Antineoplásicos / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha