Simulational Tests of the Rouse Model.
Polymers (Basel)
; 15(12)2023 Jun 08.
Article
em En
| MEDLINE
| ID: mdl-37376261
An extensive review of literature simulations of quiescent polymer melts is given, considering results that test aspects of the Rouse model in the melt. We focus on Rouse model predictions for the mean-square amplitudes ⟨(Xp(0))2⟩ and time correlation functions ⟨Xp(0)Xp(t)⟩ of the Rouse mode Xp(t). The simulations conclusively demonstrate that the Rouse model is invalid in polymer melts. In particular, and contrary to the Rouse model, (i) mean-square Rouse mode amplitudes ⟨(Xp(0))2⟩ do not scale as sin-2(pπ/2N), N being the number of beads in the polymer. For small p (say, p≤3) ⟨(Xp(0))2⟩ scales with p as p-2; for larger p, it scales as p-3. (ii) Rouse mode time correlation functions ⟨Xp(t)Xp(0)⟩ do not decay with time as exponentials; they instead decay as stretched exponentials exp(-αtß). ß depends on p, typically with a minimum near N/2 or N/4. (iii) Polymer bead displacements are not described by independent Gaussian random processes. (iv) For p≠q, ⟨Xp(t)Xq(0)⟩ is sometimes non-zero. (v) The response of a polymer coil to a shear flow is a rotation, not the affine deformation predicted by Rouse. We also briefly consider the Kirkwood-Riseman polymer model.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Polymers (Basel)
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos