Your browser doesn't support javascript.
loading
Risk stratification by nomogram of deep learning radiomics based on multiparametric magnetic resonance imaging in knee meniscus injury.
Zhen, Tao; Fang, Jing; Hu, Dacheng; Ruan, Mei; Wang, Luoyu; Fan, Sandra; Shen, Qijun.
Afiliação
  • Zhen T; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Zhejiang, 310006, Hangzhou, China.
  • Fang J; Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China.
  • Hu D; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Zhejiang, 310006, Hangzhou, China.
  • Ruan M; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Zhejiang, 310006, Hangzhou, China.
  • Wang L; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Zhejiang, 310006, Hangzhou, China.
  • Fan S; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Zhejiang, 310006, Hangzhou, China.
  • Shen Q; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Zhejiang, 310006, Hangzhou, China. shenqijun80@163.com.
Int Orthop ; 47(10): 2497-2505, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37386277
PURPOSE: To construct and validate a nomogram model that integrated deep learning radiomic features based on multiparametric MRI and clinical features for risk stratification of meniscus injury. METHODS: A total of 167 knee MR images were collected from two institutions. All patients were classified into two groups based on the MR diagnostic criteria proposed by Stoller et al. The automatic meniscus segmentation model was constructed through V-net. LASSO regression was performed to extract the optimal features correlated to risk stratification. A nomogram model was constructed by combining the Radscore and clinical features. The performance of the models was evaluated by ROC analysis and calibration curve. Subsequently, the model was simulated by junior doctors in order to test its practical application effect. RESULTS: The Dice similarity coefficients of automatic meniscus segmentation models were all over 0.8. Eight optimal features, identified by LASSO regression, were employed to calculate the Radscore. The combined model showed a better performance in both the training cohort (AUC = 0.90, 95%CI: 0.84-0.95) and the validation cohort (AUC = 0.84, 95%CI: 0.72-0.93). The calibration curve indicated a better accuracy of the combined model than either the Radscore or clinical model alone. The simulation results showed that the diagnostic accuracy of junior doctors increased from 74.9 to 86.2% after using the model. CONCLUSION: Deep learning V-net demonstrated great performance in automatic meniscus segmentation of the knee joint. It was reliable for stratifying the risk of meniscus injury of the knee by nomogram which integrated the Radscores and clinical features.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Int Orthop Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Int Orthop Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China