Your browser doesn't support javascript.
loading
Size-dependent miscibility controls the kinetics of anion exchange in cesium lead halide nanocrystals.
Zhang, Dongyan; Wu, Xinyi Sarah; Wang, Dong; Sadtler, Bryce.
Afiliação
  • Zhang D; Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
  • Wu XS; Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
  • Wang D; Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
  • Sadtler B; Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA.
J Chem Phys ; 159(1)2023 Jul 07.
Article em En | MEDLINE | ID: mdl-37403851
ABSTRACT
Anion exchange is a facile, post-synthetic method to tune the emission wavelength of colloidal cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals. While colloidal nanocrystals can exhibit size-dependent phase stability and chemical reactivity, the role of size in the mechanism of anion exchange in CsPbX3 nanocrystals has not been elucidated. We used single-particle fluorescence microscopy to monitor the transformation of individual CsPbBr3 nanocrystals to CsPbI3. By systematically varying the size of the nanocrystals and the concentration of substitutional iodide, we observed that smaller nanocrystals exhibit longer transition times in their fluorescence trajectories, while larger nanocrystals undergo a more abrupt transition during anion exchange. Monte Carlo simulations were used to rationalize the size-dependent reactivity, in which we varied how each exchange event affects the probability for further exchange. Greater cooperativity for simulated ion exchange leads to shorter transition times to complete the exchange. We propose that size-dependent miscibility between CsPbBr3 and CsPbI3 at the nanoscale controls the reaction kinetics. Smaller nanocrystals maintain a homogeneous composition during anion exchange. As the nanocrystal size increases, variations in the octahedral tilting patterns of the perovskite crystals lead to different structures for CsPbBr3 and CsPbI3. Thus, an iodide-rich region must first nucleate within larger CsPbBr3 nanocrystals, which is followed by rapid transformation to CsPbI3. While higher concentrations of substitutional anions can suppress this size-dependent reactivity, the inherent differences in reactivity between nanocrystals of different sizes are important to consider when scaling up this reaction for applications in solid-state lighting and biological imaging.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos