Your browser doesn't support javascript.
loading
Postsynthetic Annulation of Three-Dimensional Covalent Organic Frameworks for Boosting CO2 Photoreduction.
Dong, Pengfei; Xu, Xinyu; Luo, Rengan; Yuan, Shuai; Zhou, Jun; Lei, Jianping.
Afiliação
  • Dong P; State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Xu X; State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Luo R; State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Yuan S; State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Zhou J; State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
  • Lei J; State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
J Am Chem Soc ; 145(28): 15473-15481, 2023 Jul 19.
Article em En | MEDLINE | ID: mdl-37421363
ABSTRACT
Three-dimensional covalent organic frameworks (3D COFs), with interconnected pores and exposed functional groups, provide new opportunities for the design of advanced functional materials through postsynthetic modification. Herein, we demonstrate the successful postsynthetic annulation of 3D COFs to construct efficient CO2 reduction photocatalysts. Two 3D COFs, NJU-318 and NJU-319Fe, were initially constructed by connecting hexaphenyl-triphenylene units with pyrene- or Fe-porphyrin-based linkers. Subsequently, the hexaphenyl-triphenylene moieties within the COFs were postsynthetically transformed into π-conjugated hexabenzo-trinaphthylene (pNJU-318 and pNJU-319Fe) to enhance visible light absorption and CO2 photoreduction activity. The optimized photocatalyst, pNJU-319Fe, shows a CO yield of 688 µmol g-1, representing a 2.5-fold increase compared to that of unmodified NJU-319Fe. Notably, the direct synthesis of hexabenzo-trinaphthylene-based COF catalysts was unsuccessful due to the low solubility of conjugated linkers. This study not only provides an effective method to construct photocatalysts but also highlights the unlimited tunability of 3D COFs through structural design and postsynthetic modification.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China