Your browser doesn't support javascript.
loading
A general Bayesian bootstrap for censored data based on the beta-Stacy process.
Arfè, Andrea; Muliere, Pietro.
Afiliação
  • Arfè A; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center 485 Lexington Ave, 2nd floor New York, NY 10017, United States.
  • Muliere P; Department of Decision Sciences, Bocconi University, 20136 Milan, Italy.
J Stat Plan Inference ; 222: 241-251, 2023 Jan.
Article em En | MEDLINE | ID: mdl-37457239
We introduce a novel procedure to perform Bayesian non-parametric inference with right-censored data, the beta-Stacy bootstrap. This approximates the posterior law of summaries of the survival distribution (e.g. the mean survival time). More precisely, our procedure approximates the joint posterior law of functionals of the beta-Stacy process, a non-parametric process prior that generalizes the Dirichlet process and that is widely used in survival analysis. The beta-Stacy bootstrap generalizes and unifies other common Bayesian bootstraps for complete or censored data based on non-parametric priors. It is defined by an exact sampling algorithm that does not require tuning of Markov Chain Monte Carlo steps. We illustrate the beta-Stacy bootstrap by analyzing survival data from a real clinical trial.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Stat Plan Inference Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Stat Plan Inference Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos