Your browser doesn't support javascript.
loading
Impact of tumor suppressor genes inactivation on the multidrug resistance phenotype of hepatocellular carcinoma cells.
Sanchez-Martin, Anabel; Sanchon-Sanchez, Paula; Romero, Marta R; Marin, Jose J G; Briz, Oscar.
Afiliação
  • Sanchez-Martin A; Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain.
  • Sanchon-Sanchez P; Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid
  • Romero MR; Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid
  • Marin JJG; Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid
  • Briz O; Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid
Biomed Pharmacother ; 165: 115209, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37499450
ABSTRACT
The response of advanced hepatocellular carcinoma (HCC) to pharmacological treatments is unsatisfactory and heterogeneous. Inactivation of tumor suppressor genes (TSGs) by genetic and epigenetic events is frequent in HCC. This study aimed at investigating the impact of frequently altered TSGs on HCC chemoresistance. TSG alterations were screened by in silico analysis of TCGA-LIHC database, and their relationship with survival was investigated. These TSGs were silenced in HCC-derived cell lines using CRISPR/Cas9. TLDA was used to determine the expression of a panel of 94 genes involved in the resistome. Drug sensitivity, cell proliferation, colony formation and cell migration were assessed. The in silico study revealed the down-regulation of frequently inactivated TSGs in HCC (ARID1A, PTEN, CDH1, and the target of p53, CDKN1A). The presence of TP53 and ARID1A variants and the low expression of PTEN and CDH1 correlated with a worse prognosis of HCC patients. In PLC/PRF/5 cells, ARID1A knockout (ARID1AKO) induced increased sensitivity to cisplatin, doxorubicin, and cabozantinib, without affecting other characteristics of malignancy. PTENKO and E-CadKO showed minimal changes in malignancy, resistome, and drug response. In p53KO HepG2 cells, enhanced malignant properties and higher resistance to cisplatin, doxorubicin, sorafenib, and regorafenib were found. This was associated with changes in the resistome. In conclusion, the altered expression and function of several TSGs are involved in the heterogeneity of HCC chemoresistance and other features of malignancy, contributing to the poor prognosis of these patients. Individual identification of pharmacological vulnerabilities is required to select the most appropriate treatment for each patient.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biomed Pharmacother Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biomed Pharmacother Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha