Your browser doesn't support javascript.
loading
Inducible Rbpms-CreERT2 Mouse Line for Studying Gene Function in Retinal Ganglion Cell Physiology and Disease.
Guo, Luming; Xie, Xiaoling; Wang, Jing; Xiao, Haiyan; Li, Shuchun; Xu, Mei; Quainoo, Ebenezer; Koppaka, Rithwik; Zhuo, Jiaping; Smith, Sylvia B; Gan, Lin.
Afiliação
  • Guo L; College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
  • Xie X; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Wang J; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Xiao H; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Li S; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Xu M; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Quainoo E; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Koppaka R; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Zhuo J; College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
  • Smith SB; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
  • Gan L; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
Cells ; 12(15)2023 07 27.
Article em En | MEDLINE | ID: mdl-37566030
ABSTRACT
Retinal ganglion cells (RGCs) are the sole output neurons conveying visual stimuli from the retina to the brain, and dysfunction or loss of RGCs is the primary determinant of visual loss in traumatic and degenerative ocular conditions. Currently, there is a lack of RGC-specific Cre mouse lines that serve as invaluable tools for manipulating genes in RGCs and studying the genetic basis of RGC diseases. The RNA-binding protein with multiple splicing (RBPMS) is identified as the specific marker of all RGCs. Here, we report the generation and characterization of a knock-in mouse line in which a P2A-CreERT2 coding sequence is fused in-frame to the C-terminus of endogenous RBPMS, allowing for the co-expression of RBPMS and CreERT2. The inducible Rbpms-CreERT2 mice exhibited a high recombination efficiency in activating the expression of the tdTomato reporter gene in nearly all adult RGCs as well as in differentiated RGCs starting at E13.5. Additionally, both heterozygous and homozygous Rbpms-CreERT2 knock-in mice showed no detectable defect in the retinal structure, visual function, and transcriptome. Together, these results demonstrated that the Rbpms-CreERT2 knock-in mouse can serve as a powerful and highly desired genetic tool for lineage tracing, genetic manipulation, retinal physiology study, and ocular disease modeling in RGCs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retina / Células Ganglionares da Retina Limite: Animals Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retina / Células Ganglionares da Retina Limite: Animals Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China