Your browser doesn't support javascript.
loading
Cross-view contrastive representation learning approach to predicting DTIs via integrating multi-source information.
He, Chengxin; Qu, Yuening; Yin, Jin; Zhao, Zhenjiang; Ma, Runze; Duan, Lei.
Afiliação
  • He C; School of Computer Science, Sichuan University, Chengdu 610065, China; Med-X Center for Informatics, Sichuan University, Chengdu 610065, China.
  • Qu Y; School of Computer Science, Sichuan University, Chengdu 610065, China.
  • Yin J; The West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610065, China.
  • Zhao Z; School of Computer Science, Sichuan University, Chengdu 610065, China.
  • Ma R; School of Computer Science, Sichuan University, Chengdu 610065, China.
  • Duan L; School of Computer Science, Sichuan University, Chengdu 610065, China; Med-X Center for Informatics, Sichuan University, Chengdu 610065, China. Electronic address: leiduan@scu.edu.cn.
Methods ; 218: 176-188, 2023 10.
Article em En | MEDLINE | ID: mdl-37586602
Drug-target interaction (DTI) prediction serves as the foundation of new drug findings and drug repositioning. For drugs/targets, the sequence data contains the biological structural information, while the heterogeneous network contains the biochemical functional information. These two types of information describe different aspects of drugs and targets. Due to the complexity of DTI machinery, it is necessary to learn the representation from multiple perspectives. We hereby try to design a way to leverage information from multi-source data to the maximum extent and find a strategy to fuse them. To address the above challenges, we propose a model, named MOVE (short for integrating multi-source information for predicting DTI via cross-view contrastive learning), for learning comprehensive representations of each drug and target from multi-source data. MOVE extracts information from the sequence view and the network view, then utilizes a fusion module with auxiliary contrastive learning to facilitate the fusion of representations. Experimental results on the benchmark dataset demonstrate that MOVE is effective in DTI prediction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reposicionamento de Medicamentos / Desenvolvimento de Medicamentos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Assunto da revista: BIOQUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reposicionamento de Medicamentos / Desenvolvimento de Medicamentos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Methods Assunto da revista: BIOQUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China