Your browser doesn't support javascript.
loading
Dual Protective Porous Ti3 C2 Tx MXene/Polyimide Composite Film for Thermal Insulation and Electromagnetic Interference Shielding.
Ding, Renjie; Yan, Qian; Xue, Fuhua; Li, Pengyang; Xiong, Jinhua; Zhao, Xu; Liu, Zonglin; Xu, Liangliang; Chen, Zhong; Zheng, Haowen; Tang, Zhigong; Peng, Qingyu; He, Xiaodong.
Afiliação
  • Ding R; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Yan Q; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Xue F; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Li P; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Xiong J; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Zhao X; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Liu Z; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Xu L; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Chen Z; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Zheng H; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Tang Z; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • Peng Q; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
  • He X; National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
Small ; 19(50): e2304946, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37594725
The thriving 5G communication technology leads to the high demand for EMI shielding materials and thermal management materials. Particularly, portable thermal-sensitive electronic devices have more stringent requirements for thermal insulation performances. In most cases, ultrathin EMI shielding materials integrated with ultralow thermal conductivity are not easy to be achieved. To overcome this obstacle, dual protective porous composite films based on Ti3 C2 Tx MXene and polyimide are fabricated by sacrificing polymethyl methacrylate (PMMA) templates. By optimizing the contact thermal resistance and Kapitza resistance, the composite film presents superior thermal insulation performances with a thermal conductivity of 0.0136 W m-1 K-1 . Moreover, the hybrid porous film maintains superior EMI shielding effectiveness of 63.0 dB and high SSE/t of 31651.2 dB cm2 g-1 . Nevertheless, the excellent active and passive heating ability based on Joule heating and photothermal conversion makes the composite film an ideal portable material for thermal management. This work sheds light on designing thermal management materials and EMI shielding materials for cutting-edge electronic devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article