Machine Learning Assisted Discovery of Interactions between Pesticides, Phthalates, Phenols, and Trace Elements in Child Neurodevelopment.
Environ Sci Technol
; 57(46): 18139-18150, 2023 Nov 21.
Article
em En
| MEDLINE
| ID: mdl-37595051
A growing body of literature suggests that developmental exposure to individual or mixtures of environmental chemicals (ECs) is associated with autism spectrum disorder (ASD). However, investigating the effect of interactions among these ECs can be challenging. We introduced a combination of the classical exposure-mixture Weighted Quantile Sum (WQS) regression and a machine-learning method termed Signed iterative Random Forest (SiRF) to discover synergistic interactions between ECs that are (1) associated with higher odds of ASD diagnosis, (2) mimic toxicological interactions, and (3) are present only in a subset of the sample whose chemical concentrations are higher than certain thresholds. In a case-control Childhood Autism Risks from Genetics and Environment (CHARGE) study, we evaluated multiordered synergistic interactions among 62 ECs measured in the urine samples of 479 children in association with increased odds for ASD diagnosis (yes vs no). WQS-SiRF identified two synergistic two-ordered interactions between (1) trace-element cadmium (Cd) and the organophosphate pesticide metabolite diethyl-phosphate (DEP); and (2) 2,4,6-trichlorophenol (TCP-246) and DEP. Both interactions were suggestively associated with increased odds of ASD diagnosis in the subset of children with urinary concentrations of Cd, DEP, and TCP-246 above the 75th percentile. This study demonstrates a novel method that combines the inferential power of WQS and the predictive accuracy of machine-learning algorithms to discover potentially biologically relevant chemical-chemical interactions associated with ASD.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Praguicidas
/
Oligoelementos
/
Transtorno do Espectro Autista
Tipo de estudo:
Prognostic_studies
Limite:
Child
/
Humans
Idioma:
En
Revista:
Environ Sci Technol
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos