Voxel Transformer with Density-Aware Deformable Attention for 3D Object Detection.
Sensors (Basel)
; 23(16)2023 Aug 17.
Article
em En
| MEDLINE
| ID: mdl-37631754
The Voxel Transformer (VoTr) is a prominent model in the field of 3D object detection, employing a transformer-based architecture to comprehend long-range voxel relationships through self-attention. However, despite its expanded receptive field, VoTr's flexibility is constrained by its predefined receptive field. In this paper, we present a Voxel Transformer with Density-Aware Deformable Attention (VoTr-DADA), a novel approach to 3D object detection. VoTr-DADA leverages density-guided deformable attention for a more adaptable receptive field. It efficiently identifies key areas in the input using density features, combining the strengths of both VoTr and Deformable Attention. We introduce the Density-Aware Deformable Attention (DADA) module, which is specifically designed to focus on these crucial areas while adaptively extracting more informative features. Experimental results on the KITTI dataset and the Waymo Open dataset show that our proposed method outperforms the baseline VoTr model in 3D object detection while maintaining a fast inference speed.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Sensors (Basel)
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos