Your browser doesn't support javascript.
loading
Human Activity Recognition via Score Level Fusion of Wi-Fi CSI Signals.
Lim, Gunsik; Oh, Beomseok; Kim, Donghyun; Toh, Kar-Ann.
Afiliação
  • Lim G; School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
  • Oh B; Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
  • Kim D; School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
  • Toh KA; School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Sensors (Basel) ; 23(16)2023 Aug 21.
Article em En | MEDLINE | ID: mdl-37631828
Wi-Fi signals are ubiquitous and provide a convenient, covert, and non-invasive means of recognizing human activity, which is particularly useful for healthcare monitoring. In this study, we investigate a score-level fusion structure for human activity recognition using the Wi-Fi channel state information (CSI) signals. The raw CSI signals undergo an important preprocessing stage before being classified using conventional classifiers at the first level. The output scores of two conventional classifiers are then fused via an analytic network that does not require iterative search for learning. Our experimental results show that the fusion provides good generalization and a shorter learning processing time compared with state-of-the-art networks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Atividades Humanas / Aprendizagem Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Atividades Humanas / Aprendizagem Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article