Your browser doesn't support javascript.
loading
Phagotrophic protists preserve antibiotic-resistant opportunistic human pathogens in the vegetable phyllosphere.
Lin, Chenshuo; Li, Li-Juan; Ren, Kexin; Zhou, Shu-Yi-Dan; Isabwe, Alain; Yang, Le-Yang; Neilson, Roy; Yang, Xiao-Ru; Cytryn, Eddie; Zhu, Yong-Guan.
Afiliação
  • Lin C; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
  • Li LJ; University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
  • Ren K; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
  • Zhou SY; University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
  • Isabwe A; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
  • Yang LY; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China.
  • Neilson R; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
  • Yang XR; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
  • Cytryn E; University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
  • Zhu YG; Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, Scotland, UK.
ISME Commun ; 3(1): 94, 2023 Sep 02.
Article em En | MEDLINE | ID: mdl-37660098
ABSTRACT
Food safety of leafy greens is an emerging public health issue as they can harbor opportunistic human pathogens (OHPs) and expose OHPs to consumers. Protists are an integral part of phyllosphere microbial ecosystems. However, our understanding of protist-pathogen associations in the phyllosphere and their consequences on public health remains poor. Here, we examined phyllosphere protists, human pathogen marker genes (HPMGs), and protist endosymbionts from four species of leafy greens from major supermarkets in Xiamen, China. Our results showed that Staphylococcus aureus and Klebsiella pneumoniae were the dominant human pathogens in the vegetable phyllosphere. The distribution of HPMGs and protistan communities differed between vegetable species, of which Chinese chive possessed the most diverse protists and highest abundance of HPMGs. HPMGs abundance positively correlated with the diversity and relative abundance of phagotrophic protists. Whole genome sequencing further uncovered that most isolated phyllosphere protists harbored multiple OHPs which carried antibiotic resistance genes, virulence factors, and metal resistance genes and had the potential to HGT. Colpoda were identified as key phagotrophic protists which positively linked to OHPs and carried diverse resistance and virulence potential endosymbiont OHPs including Pseudomonas nitroreducens, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. We highlight that phyllosphere protists contribute to the transmission of resistant OHPs through internalization and thus pose risks to the food safety of leafy greens and human health. Our study provides insights into the protist-OHP interactions in the phyllosphere, which will help in food safety surveillance and human health.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ISME Commun Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: ISME Commun Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China