Your browser doesn't support javascript.
loading
Gut microbiota-induced CXCL1 elevation triggers early neuroinflammation in the substantia nigra of Parkinsonian mice.
Ma, Xi-Zhen; Chen, Lei-Lei; Qu, Le; Li, Hui; Wang, Jun; Song, Ning; Xie, Jun-Xia.
Afiliação
  • Ma XZ; Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
  • Chen LL; Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
  • Qu L; Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
  • Li H; Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
  • Wang J; Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China.
  • Song N; Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China. ningsong@qdu.edu.cn.
  • Xie JX; Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266021, China. jxiaxie@public.qd.sd.cn.
Acta Pharmacol Sin ; 45(1): 52-65, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37674043
ABSTRACT
Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Microbioma Gastrointestinal Limite: Animals Idioma: En Revista: Acta Pharmacol Sin Assunto da revista: FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Microbioma Gastrointestinal Limite: Animals Idioma: En Revista: Acta Pharmacol Sin Assunto da revista: FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China