Your browser doesn't support javascript.
loading
Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes.
Lim, Joe J; Diener, Christian; Wilson, James; Valenzuela, Jacob J; Baliga, Nitin S; Gibbons, Sean M.
Afiliação
  • Lim JJ; Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA.
  • Diener C; Institute for Systems Biology, Seattle, WA, 98109, USA.
  • Wilson J; Institute for Systems Biology, Seattle, WA, 98109, USA.
  • Valenzuela JJ; Institute for Systems Biology, Seattle, WA, 98109, USA.
  • Baliga NS; Institute for Systems Biology, Seattle, WA, 98109, USA.
  • Gibbons SM; Departments of Biology and Microbiology, University of Washington, Seattle, WA, 98105, USA.
Nat Commun ; 14(1): 5682, 2023 09 14.
Article em En | MEDLINE | ID: mdl-37709733
Longitudinal sampling of the stool has yielded important insights into the ecological dynamics of the human gut microbiome. However, human stool samples are available approximately once per day, while commensal population doubling times are likely on the order of minutes-to-hours. Despite this mismatch in timescales, much of the prior work on human gut microbiome time series modeling has assumed that day-to-day fluctuations in taxon abundances are related to population growth or death rates, which is likely not the case. Here, we propose an alternative model of the human gut as a stationary system, where population dynamics occur internally and the bacterial population sizes measured in a bolus of stool represent a steady-state endpoint of these dynamics. We formalize this idea as stochastic logistic growth. We show how this model provides a path toward estimating the growth phases of gut bacterial populations in situ. We validate our model predictions using an in vitro Escherichia coli growth experiment. Finally, we show how this method can be applied to densely-sampled human stool metagenomic time series data. We discuss how these growth phase estimates may be used to better inform metabolic modeling in flow-through ecosystems, like animal guts or industrial bioreactors.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Líquidos Corporais / Metagenoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Líquidos Corporais / Metagenoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos