Your browser doesn't support javascript.
loading
Infinite Twisted Polycatenanes.
Liu, Jiali; Wu, Mengqi; Wu, Lin; Liang, Yimin; Tang, Zheng-Bin; Jiang, Liang; Bian, Lifang; Liang, Kejiang; Zheng, Xiaorui; Liu, Zhichang.
Afiliação
  • Liu J; Department of Chemistry, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
  • Wu M; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Wu L; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Liang Y; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Tang ZB; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Jiang L; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Bian L; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Liang K; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Zheng X; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
  • Liu Z; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, School of Engineering, and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 31003
Angew Chem Int Ed Engl ; 62(46): e202314481, 2023 Nov 13.
Article em En | MEDLINE | ID: mdl-37794215
ABSTRACT
Poly[n]catenanes have exceptional mechanical bonding properties that give them tremendous potential for use in the development of molecular machines and soft materials. Synthesizing these compounds has, however, proven to be a formidable challenge. Herein, we describe a concise method for the construction of twisted polycatenanes. Our approach involves using preorganized double helicates as templates, linked crosswise in a linear fashion by either silver ions or triple bonds. By using this approach, we successfully synthesized twisted polycatenanes with both coordination and covalent bonding employing Ag(I) ions and ethynylene units, respectively, as the linkages and leveraging the same Ag(I)-templated double helicate in both cases. Synthesis with Ag(I) ions formed a single-crystalline one-dimensional (1D) coordination poly[n]catenane, and synthesis using ethynylene units generated 1D fibers which self-assembled with solvents to form a gel. Our results confirm the potential of multi-stranded metallohelicates for creating sophisticated mechanically interlocked molecules and polymers, which could pave the way for exploration in the realms of molecular nanotopology and materials design.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China