Your browser doesn't support javascript.
loading
Airway Cells 3D Reconstruction via Manual and Machine-Learning Aided Segmentation of Volume EM Datasets.
Vijayakumaran, Aaran; Abuammar, Analle; Medagedara, Odara; Narayan, Kedar; Mennella, Vito.
Afiliação
  • Vijayakumaran A; Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
  • Abuammar A; Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
  • Medagedara O; Medical Research Council Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, UK.
  • Narayan K; Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
  • Mennella V; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
Methods Mol Biol ; 2725: 131-146, 2024.
Article em En | MEDLINE | ID: mdl-37856022
ABSTRACT
Volume electron microscopy (vEM) is a high-resolution imaging technique capable of revealing the 3D structure of cells, tissues, and model organisms. This imaging modality is gaining prominence due to its ability to provide a comprehensive view of cells at the nanometer scale. The visualization and quantitative analysis of individual subcellular structures however requires segmentation of each 2D electron micrograph slice of the 3D vEM dataset; this process is extremely laborious de facto limiting its applications and throughput. To address these limitations, deep learning approaches have been recently developed including Empanada-Napari plugin, an open-source tool for automated segmentation based on a Panoptic-DeepLab (PDL) architecture. In this chapter, we provide a step-by-step protocol describing the process of manual segmentation using 3dMOD within the IMOD package and the process of automated segmentation using Empanada-Napari plugins for the 3D reconstruction of airway cellular structures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento Tridimensional / Microscopia Eletrônica de Volume Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento Tridimensional / Microscopia Eletrônica de Volume Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article