Your browser doesn't support javascript.
loading
Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli.
Jojoa-Cruz, Sebastian; Dubin, Adrienne E; Lee, Wen-Hsin; Ward, Andrew.
Afiliação
  • Jojoa-Cruz S; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA.
  • Dubin AE; Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA.
  • Lee WH; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA.
  • Ward A; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, USA.
bioRxiv ; 2024 Mar 04.
Article em En | MEDLINE | ID: mdl-37873218
ABSTRACT
The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension1. Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e., they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). In an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization2. Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos