Low-intensity pulsed ultrasound treatment mitigates ventricular arrhythmias via inhibiting microglia-mediated neuroinflammation in heart failure rat model.
Int Immunopharmacol
; 126: 111317, 2024 Jan 05.
Article
em En
| MEDLINE
| ID: mdl-38048669
BACKGROUND: Sympathetic overactivation plays an important role in heart failure (HF)-induced ventricular arrhythmias (VAs). Microglia-mediated neuroinflammation could contribute to sympathetic overactivation. A previous study demonstrated that low-intensity pulsed ultrasound (LIPUS) could inhibit neuroinflammation. However, whether LIPUS could attenuate HF-induced VAs via inhibiting microglia-mediated neuroinflammation remains largely unknown. METHODS: Forth Sprague-Dawley male rats were averagely randomized into four groups: CTL (control) group, CTL + LIPUS group, HF group and HF + LIPUS. Surgical ligation of the coronary artery was used for induction of HF. In vivo electrophysiological study was performed to check VAs susceptibility. Left stellate ganglion (LSG) neural activity and heart rate variability (HRV) were used to test sympathetic nerve activity. RESULTS: Compared to the HF group, LIPUS treatment significantly ameliorated HF-induced cardiac hypertrophy, fibrosis, and dysfunction. In addition, LIPUS treatment markedly inhibited HF-induced VAs susceptibility and reversed gap junction remodeling. LIPUS treatment obviously inhibited microglial activation and neuroinflammation in PVN, sympathetic hyperactivity in the LSG and proinflammatory cytokines releases in the ventricle. P2X7/NLRP3 signaling pathway may be involved in the anti-arrhythmic effect of LIPUS treatment following HF. CONCLUSIONS: Our data demonstrated that LIPUS treatment protected against HF-induced VAs via alleviating microglia-mediated neuroinflammation, sympathetic overactivation and proinflammatory cytokines releases through inhibiting P2X7/NLRP3 signaling. This study provides novel insight into the therapeutic potential of LIPUS.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Microglia
/
Insuficiência Cardíaca
Limite:
Animals
Idioma:
En
Revista:
Int Immunopharmacol
Assunto da revista:
ALERGIA E IMUNOLOGIA
/
FARMACOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article