Your browser doesn't support javascript.
loading
Design, synthesis, and biological evaluation of novel donepezil-tacrine hybrids as multi-functional agents with low neurotoxicity against Alzheimer's disease.
Wang, Ningwei; Jia, Wenlong; Wang, Junqin; Yang, Zejun; Liu, Yaoyang; Huang, Dehua; Mei, Xiaohan; Xiong, Xinxin; Shi, Jing; Tang, Yadong; Chen, Guang; Di, Donghua; Hou, Yunlei; Liu, Yajing.
Afiliação
  • Wang N; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Jia W; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Wang J; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Yang Z; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Liu Y; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Huang D; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Mei X; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Xiong X; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Shi J; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
  • Tang Y; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Chen G; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
  • Di D; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
  • Hou Y; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
  • Liu Y; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 1
Bioorg Chem ; 143: 107010, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38056387
ABSTRACT
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and deficits in cognitive domains. Low choline levels, oxidative stress, and neuroinflammation are the primary mechanisms implicated in AD progression. Simultaneous inhibition of acetylcholinesterase (AChE) and reactive oxygen species (ROS) production by a single molecule may provide a new breath of hope for AD treatment. Here, we describe donepezil-tacrine hybrids as inhibitors of AChE and ROS. Four series of derivatives with a ß-amino alcohol linker were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit AChE and butyrylcholinesterase (BuChE) in vitro, using tacrine (hAChE, IC50 = 305.78 nM; hBuChE, IC50 = 56.72 nM) and donepezil (hAChE, IC50 = 89.32 nM; hBuChE, IC50 = 9137.16 nM) as positive controls. Compound B19 exhibited an excellent and balanced inhibitory potency against AChE (IC50 = 30.68 nM) and BuChE (IC50 = 124.57 nM). The cytotoxicity assays demonstrated that the PC12 cell viability rates of compound B19 (84.37 %) were close to that of tacrine (87.73 %) and donepezil (79.71 %). Potential therapeutic effects in AD were evaluated using the neuroprotective effect of compounds against H2O2-induced toxicity, and compound B19 (68.77 %) exhibited substantially neuroprotective activity at the concentration of 25 µM, compared with the model group (30.34 %). Furthermore, compound B19 protected PC12 cells from H2O2-induced apoptosis and ROS production. These properties of compound B19 suggested that it was a multi-functional agent with AChE inhibition, anti-oxidative, anti-inflammatory activities, and low toxicity and that it deserves further investigation as a promising agent for AD treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fármacos Neuroprotetores / Doença de Alzheimer Limite: Animals Idioma: En Revista: Bioorg Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fármacos Neuroprotetores / Doença de Alzheimer Limite: Animals Idioma: En Revista: Bioorg Chem Ano de publicação: 2024 Tipo de documento: Article